Measuring correlated electronic and vibrational spectral dynamics using line shapes in two-dimensional electronic-vibrational spectroscopy.
نویسندگان
چکیده
Two-dimensional electronic-vibrational (2DEV) spectroscopy is an experimental technique that shows great promise in its ability to provide detailed information concerning the interactions between the electronic and vibrational degrees of freedom in molecular systems. The physical quantities 2DEV is particularly suited for measuring have not yet been fully determined, nor how these effects manifest in the spectra. In this work, we investigate the use of the center line slope of a peak in a 2DEV spectrum as a measure of both the dynamic and static correlations between the electronic and vibrational states of a dye molecule in solution. We show how this center line slope is directly related to the solvation correlation function for the vibrational degrees of freedom. We also demonstrate how the strength with which the vibration on the electronic excited state couples to its bath can be extracted from a set of 2DEV spectra. These analytical techniques are then applied to experimental data from the laser dye 3,3'-diethylthiatricarbocyanine iodide in deuterated chloroform, where we determine the lifetime of the correlation between the electronic transition frequency and the transition frequency for the backbone C = C stretch mode to be ∼1.7 ps. Furthermore, we find that on the electronic excited state, this mode couples to the bath ∼1.5 times more strongly than on the electronic ground state.
منابع مشابه
Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy.
Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated...
متن کاملFollowing Coupled Electronic-Nuclear Motion through Conical Intersections in the Ultrafast Relaxation of β-Apo-8'-carotenal.
Ultrafast transient electronic absorption, one- and two- dimensional electronic-vibrational spectroscopies were used to study the nonradiative relaxation dynamics of β-apo-8'-carotenal (bapo), a model aldehyde containing carotenoid, in cyclohexane and acetonitrile solutions. 2D electronic-vibrational (2DEV) spectroscopy allows for a direct correlation between the intrinsically coupled electroni...
متن کاملCenter Line Slope Analysis in Two-Dimensional Electronic Spectroscopy
Center line slope (CLS) analysis in 2D infrared spectroscopy has been extensively used to extract frequency-frequency correlation functions of vibrational transitions. We apply this concept to 2D electronic spectroscopy, where CLS is a measure of electronic gap fluctuations. The two domains, infrared and electronic, possess differences: In the infrared, the frequency fluctuations are classical,...
متن کاملA method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy.
Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectrosc...
متن کاملImpact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra.
Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible expla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 142 17 شماره
صفحات -
تاریخ انتشار 2015